1 хв читання

Трансформатор (від лат. transformo — перетворювати) — пристрій для перетворення параметрів (амплітуд і фаз) напруг і струмів. Трифазний силовий трансформатор. Установка трансформатора на відкритому повітрі. Силовий трансформатор 110/35/10кВ потужністю 63МВА. Трансформатор — статичний електромагнітний пристрій, що має дві або більше індуктивно зв'язані обмотки і призначений для перетворення за допомогою електромагнітної індукції однієї або кількох систем (напруг) змінного струму в одну або декілька інших систем (напруг) змінного струму без зміни частоти системи (напруги) змінного струму. Трансформатори широко застосовуються в лініях електропередач, в розподільних та побутових пристроях. При високій напрузі й малій силі струму передача електроенергії відбувається з меншими втратами. Тому, зазвичай лінії електропередач є високовольтними. Водночас побутові й промислові машини вимагають великої сили струму й малої напруги, тому перед споживанням електроенергія перетворюється в низьковольтну. Трансформатори знайшли застосування також у різних випрямних, підсилювальних, сигналізаційних та інших пристроях. Коефіцієнт корисної дії сучасних трансформаторів, особливо підвищеної потужності, вельми високий і досягає значень 0,95…0,996.


Режими роботи трансформатора.

Режим холостого ходу.

Трансформатор може працювати в режимі холостого ходу, коли вторинне коло розімкнене (навантаження відсутнє). За допомогою дослідження холостого ходу можна визначити ККД трансформатора, коефіцієнт трансформації, а також втрати в осерді. У режимі холостого ходу для трансформатора з сердечником з магнітом'якого матеріалу струм холостого ходу характеризує величину втрат в осерді (на вихрові струми і на гістерезис) та реактивну потужність перемагнічування магнітопроводу. Потужність втрат можна обчислити, помноживши активну складову струму холостого ходу на напругу, що подається на трансформатор. Для трансформатора без феромагнітного осердя втрати на перемагнічування відсутні, і струм холостого ходу визначається опором індуктивності первинної обмотки, який пропорційний до частоти змінного струму та величини індуктивності.

Режим короткого замикання.

Режим короткого замикання можна отримати в результаті замикання вторинної обмотки накоротко. Це аварійний режим, що може призвести до виходу з ладу трансформатора. При цьому струм у вторинній обмотці може бути у 20…30 разів більшим за номінальний. Тому слід відрізняти режим короткого замикання від досліду короткого замикання. За допомогою останнього можна визначити втрати корисної потужності на нагрівання проводів в колі трансформатора. При дослідженні режиму короткого замикання, на первинну обмотку трансформатора подається змінна напруга невеликої величини, виводи вторинної обмотки закорочують. Величину напруги на вході встановлюють такою, щоб струм короткого замикання дорівнював номінальному (розрахунковому) струму трансформатора. У таких умовах величина напруги короткого замикання характеризує втрати в обмотках трансформатора, втрати на омічний опір. Потужність втрат можна обчислити помноживши напругу короткого замикання на струм короткого замикання. Даний режим широко використовується у вимірювальних трансформаторах струму.

Режим навантаження.

Режим роботи трансформатора при якому вторинна обмотка замкнута на опір називається режимом роботи трансформатора під навантаженням. При такому режимі роботи у вторинній обмотці буде протікати струм IS, який створить свій магнітний потік ΦS, який за правилом Ленца має зменшити зміни магнітного потоку в осерді. Це призводить до автоматичного збільшення сили струму в колі первинної обмотки. Збільшення сили струму в колі первинної обмотки відбувається згідно із законом збереження енергії.

Коментарі
* Адреса електронної пошти не відображатиметься на сайті.
I BUILT MY SITE FOR FREE USING